射影定理内容: AB=AD·AC,BC=CD·CA 两式相加得: AB+BC=AD·AC+CD·AC=(AD+CD)·AC=AC(即勾股定理)。 注:AB的意思是AB的2次方。 射影定理证明: 已知:三角形中角A=90度。AD是高。 证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB 同理可证其余。 证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA=acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其余。 上一篇:开学需要准备哪些文具用品 下一篇:时光飞逝的短句唯美感叹时光流逝的句子 |