标题 | 高三数学等差数列教案设计 |
范文 | 高三数学等差数列教案设计 作为一名教职工,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编为大家收集的高三数学等差数列教案设计,希望对大家有所帮助。 一、预习问题: 1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。 2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 , 即 或 。 3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。 4、等差数列的通项公式: 。 5、判断正误: ①1,2,3,4,5是等差数列; ( ) ②1,1,2,3,4,5是等差数列; ( ) ③数列6,4,2,0是公差为2的等差数列; ( ) ④数列 是公差为 的等差数列; ( ) ⑤数列 是等差数列; ( ) ⑥若 ,则 成等差数列; ( ) ⑦若 ,则数列 成等差数列; ( ) ⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( ) ⑨等差数列的.公差是该数列中任何相邻两项的差。 ( ) 6、思考:如何证明一个数列是等差数列。 二、实战操作: 例1、(1)求等差数列8,5,2,的第20项。 (2) 是不是等差数列 中的项?如果是,是第几项? (3)已知数列 的公差 则 例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗? 例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。