标题 | 新八年级数学下册教案 |
范文 | 新北师大版八年级数学下册教案 作为一位杰出的教职工,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。那么什么样的教案才是好的呢?以下是小编整理的新北师大版八年级数学下册教案,欢迎阅读与收藏。 新北师大版八年级数学下册教案1一、学习目标及重、难点: 1、了解方差的定义和计算公式。 2、理解方差概念的产生和形成的过程。 3、会用方差计算公式来比较两组数据的波动大小。 重点:方差产生的必要性和应用方差公式解决实际问题。 难点:理解方差公式 二、自主学习: (一)知识我先懂: 方差:设有n个数据,各数据与它们的平均数的差的'平方分别是 我们用它们的平均数,表示这组数据的方差:即用 来表示。 给力小贴士:方差越小说明这组数据越。波动性越。 (二)自主检测小练习: 1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。 2、甲、乙两组数据如下: 甲组:10 9 11 8 12 13 10 7; 乙组:7 8 9 10 11 12 11 12. 分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小. 三、新课讲解: 引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、 10、13、7、13、10、8、11、8; 乙:8、13、12、11、10、12、7、7、10、10; 问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:= ) (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了) 归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是 我们用它们的平均数,表示这组数据的方差:即用来表示。 (一)例题讲解: 例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、 测试次数第1次第2次第3次第4次第5次 段巍13 14 13 12 13 金志强10 13 16 14 12 给力提示:先求平均数,在利用公式求解方差。 (二)小试身手 1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数是,但S =,S =,则S S,所以确定 去参加比赛。 1、求下列数据的众数: (1)3,2,5,3,1,2,3 (2)5,2,1,5,3,5,2,2 2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少? 四、课堂小结 方差公式: 给力提示:方差越小说明这组数据越。波动性越。 每课一首诗:求方差,有公式;先平均,再求差; 求平方,再平均;所得数,是方差。 五、课堂检测: 1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒) 小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9 小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8 如果根据这几次成绩选拔一人参加比赛,你会选谁呢? 六、课后作业:必做题:教材141页练习1、2选做题:练习册对应部分习题 七、学习小札记: 写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐! 新北师大版八年级数学下册教案2一、素质教育目标 (一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联系. 3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理. (二)能力训练点 1.通过“探索式试明法”开拓学生思路,发展学生思维能力. 2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力. (三)德育渗透点 通过一题多解激发学生的`学习兴趣. (四)美育渗透点 通过学习,体会几何证明的方法美. 二、学法引导 构造逆命题,分析探索证明,启发讲解. 三、重点·难点·疑点及解决办法 1.教学重点:平行四边形的判定定理1、2、3的应用. 2.教学难点:综合应用判定定理和性质定理. 3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理 (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理). 新北师大版八年级数学下册教案3一、学习目标 1.多项式除以单项式的运算法则及其应用。 2.多项式除以单项式的运算算理。 二、重点难点 重点:多项式除以单项式的运算法则及其应用。 难点:探索多项式与单项式相除的运算法则的过程。 三、合作学习 (一)回顾单项式除以单项式法则 (二)学生动手,探究新课 1.计算下列各式: (1)(am+bm)÷m; (2)(a2+ab)÷a; (3)(4x2y+2xy2)÷2xy。 2.提问: ①说说你是怎样计算的; ②还有什么发现吗? (三)总结法则 1.多项式除以单项式:先把这个多项式的每一项除以xxX,再把所得的商xx 2.本质:把多项式除以单项式转化成xx 四、精讲精练 例:(1)(12a3—6a2+3a)÷3a; (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y); (3)[(x+y)2—y(2x+y)—8x]÷2x; (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。 随堂练习:教科书练习。 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号; B、把同底数幂相除,所得结果作为商的`因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行; E、多项式除以单项式法则。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。