标题 | 小学奥数数论试题:数的整除 |
范文 | 关于小学奥数数论试题:数的整除 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除. 例如:判断491678能不能被11整除. —→奇位数字的和9+6+8=23 —→偶位数位的和4+1+7=12 23-12=11 因此,491678能被11整除. 这种方法叫"奇偶位差法". 除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除. 又如:判断583能不能被11整除. 用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除. (1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的'倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。 (3)若一个整数的数字和能被3整除,则这个整数能被3整除。 (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。 (5)若一个整数的末位是0或5,则这个数能被5整除。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。